有點類似畢業答辯,但性質要嚴肅得多。

畢竟國家標準的涉及面廣、影響力大,容不得半點馬虎。

因此有些時候,這個提問流程甚至會持續超過一天時間——因為可能真的發現了問題要到場下修改。

所以評審會開上十天半個月都不算很稀罕的事情。

然而在常浩南這裡,由於他剛剛的介紹已經極其完整,加上又有渦噴14這個實打實的專案作為經驗,導致這一次的提問環節的畫風更像是……請教。

畢竟確實一次性搬出了太多新的概念、理論和工程方法了。

“常浩南同志,在你提供的評定指南檔案中提到,透過在壓氣機進口設定插板式畸變模擬裝置,請問這一插板為何要設定成單塊的弦月形板?”

第一個開口提問的是一名年紀看上去並不算大的中年工程師,從桌上放著的姓名牌來看,名字叫做林宇昂。

在昨天的會上,正是他第一個提出應該依託評定指南建立一個新的標準,而非在老的1994標準基礎上小修小補。

也正是因此,林宇昂對於常浩南講到的每一個細節都非常上心。

作為首倡者,他必須要保證萬無一失。

很多工程師出身的人都會比較杵這類涉及到原理的問題。

不過常浩南的理論功底比較紮實,加上這幾天功夫也收集了不少資料,因此絲毫不慌地穩步來到旁邊的黑板前面,拿起粉筆畫上了四幅簡圖,同時開口解釋道:

“我們在渦噴14的測試中,試用了四種不同的插板式畸變模擬裝置,包括單塊弦月形、兩塊弦月形、圓環形和扇形。”

“根據得到的結果,四種設計方案生成畸變流場的能力比較接近,但1號方案,也就是單塊弦月形板所涉及到的自變數最少,僅有一個擋板高度h,對於前期工程設計階段針對穩定性的數值模擬和最佳化工作更加有利。”

“舉個例子,在我們對於渦噴14的壓氣機進行改造的過程中,就專門考慮了對喘振裕度的最佳化……”

緊接著又是另外一個人的提問:

“在指南中的試驗操作方法中,你提到需要利用插板式畸變模擬裝置逐漸增大畸變強度,直至發動機進入不穩定工作狀態,才能得出穩定性裕度與

畸變靈敏度的係數,這是否意味著每進行一次穩定性評估都必須要毀壞一臺發動機?”

“這取決於發動機本身的情況,理論上講,對於一臺設計良好的航空發動機,可以透過調節畸變指數,使其進入不會對結構造成永久性破壞的旋轉失速狀態,不過這需要大量的試驗和模擬資料作為支撐。”

面對這個稍顯犀利的問題,常浩南面不改色,仍然是一臉自信的微笑:

“這也是我們未來希望能做到的事情,就是在飛機的飛行過程中,透過壓氣機進口的流量資料來判斷髮動機所處的情況,當出現喘振徵兆時對飛行員做出提醒,甚至主動調節飛行姿態,以避免更嚴重的失穩故障發生。”

“而且,穩定性評估是屬於極限能力測試的一部分,就和飛機的靜力試驗,以及發動機的全壽命試車一樣,因此對測試物件造成破壞本來就是計劃之中的。”

提問者點了點頭,顯然認可了這個解釋。

在大多數型號的試飛測試過程中,都不會看到02號原型機的身影,因為一般情況下02號都會是一架靜力試驗機,而全機靜力試驗的最後一個部分就是要把飛機破壞作為終止條件。

儘管聽上去有些可惜,但卻是必不可少的。

隨後的一連好幾個問題,常浩南都可以算是對答如流。

終於,在經過了長達四個多小時的馬拉松式評審之後,作為專家組組長的劉振響在意見書上寫下了